Periodic analytic approximate solutions for the Mathieu equation

نویسندگان

  • Manuel Gadella
  • Héctor Giacomini
  • L. P. Lara
چکیده

We propose two methods to find analytic periodic approximations intended for differential equations of Hill type. Here, we apply these methods on the simplest case of the Mathieu equation. The former has been inspired in the harmonic balance method and designed to find, making use on a given algebraic function, analytic approximations for the critical values and their corresponding periodic solutions of the Mathieu differential equation. What is new is that these solutions are valid for all values of the equation parameter q, no matter how large. The second one uses truncations of Fourier series and has connections with the least squares method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition Curves for the Quasi-Periodic Mathieu Equation

In this work we investigate an extension of Mathieu’s equation, the quasi-periodic (QP) Mathieu equation given by ψ̈ + [δ + (cos t+ cosωt)]ψ = 0 for small and irrational ω. Of interest is the generation of stability diagrams that identify the points or regions in the δ-ω parameter plane (for fixed ) for which all solutions of the QP Mathieu equation are bounded. Numerical integration is employed...

متن کامل

Analytic-Approximate Solution For An Integro- Differential Equation Arising In Oscillating Magnetic Fields Using Homotopy Analysis Method

In this paper, we give an analytical approximate solution for an integro- differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered. The homotopy analysis method (HAM) is used for solving this equation. Several examples are given to reconfirm the efficiency of these algorithms. The results of applying this procedure...

متن کامل

THE REVIEW OF ALMOST PERIODIC SOLUTIONS TO A STOCHASTIC DIERENTIAL EQUATION

This paper proves the existence and uniqueness of quadratic mean almost periodic mild so-lutions for a class of stochastic dierential equations in a real separable Hilbert space. Themain technique is based upon an appropriate composition theorem combined with the Banachcontraction mapping principle and an analytic semigroup of linear operators.  

متن کامل

Explicit multiple singular periodic solutions and singular soliton solutions to KdV equation

 Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...

متن کامل

Dynamic Instability Analysis of Embedded Multi-walled Carbon Nanotubes under Combined Static and Periodic Axial Loads using Floquet–Lyapunov Theory

The dynamic instability of single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT) and triple-walled carbon nanotubes (TWCNT) embedded in an elastic medium under combined static and periodic axial loads are investigated using Floquet–Lyapunov theory. An elastic multiple-beam model is utilized where the nested slender nanotubes are coupled with each other through the van d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 271  شماره 

صفحات  -

تاریخ انتشار 2015